API 521 has provided a fire radiation model that is often used in flare and other types of fire modeling
$$ q_{absorbent} = \sigma(\alpha_{surface} \cdot \varepsilon_{fire} \cdot T^4_{fire} - \varepsilon_{surface} - T^4_{surface}) + h(T_{gas} - T_{surface}) $$
$q_{absorbent}$ | absorbed heat flux from the fire ($Wm^{-2}$ or $Btu \text{ } h^{-1}ft^{-2}$) |
$\sigma$ | Stefan-Blotzmann constant ($5.67\mathrm{e}{\text{-}8}$ $Wm^{-2}K^{-4}$ or $0.1713e{\text{-}8}$ $Btu\text{ }h^{-1}ft^{-2}{^{\circ}R}^{-4}$) |
$\alpha_{surface}$ | equipment absorptivity (dimensionless) |
$\varepsilon_{fire}$ | fire emissivity (dimensionless) |
$\varepsilon_{surface}$ | surface emissivity (dimensionless) |
$T_{fire}$ | fire temperature ($K$ or ${^{\circ}R}$) |
$T_{surface}$ | equipment temperature ($K$ or ${^{\circ}R}$) |
$h$ | convective heat transfer coefficient fo air/fire in contact with the equipment ($Wm^{-2}K^{-1}$ or $Btu\text{ }h^{-1}ft^{-2}{^{\circ}R}^{-1}$) |
$T_{gas}$ | temperature of air/fire in contact with equipment surface ($K$ or ${^{\circ}R}$) |
References
- API STD 521 (2014), Pressure Relieving and Depressuring Systems, 6th Edition, American Petroleum Institute.